Ensemble Behavior after a System Failure and Restart

By David Loveluck

This paper describes how Ensemble behaves after a system crash or similar uncontrolled shutdown or
failover. Ensemble is normally configured to start processing messages automatically when the operating
system restarts or when the system has failed over to a cluster member or mirror member. No manual
intervention is required. But, in order for your system to robustly handle system failure and restart, you
must understand how Ensemble handles these conditions and develop your productions using the rules
and guidelines in this document.

The behavior in the event of a restart is very dependent on the solution and the participating
applications. Ultimately, it is the responsibility of the solution designer to address each possible failure
mode.

Guarantee of Delivery at Least Once

With wire protocols such as SOAP over HTTP or HL7 over TCP/IP, it is impossible to guarantee that
messages are sent once and only once. For example, consider a client that makes a web service request
and then the client system crashes. If the client system crashes before it receives the reply to its request,
it cannot distinguish between the case where the server did not receive the message and the case where
the server received the message but the client crashed before receiving the reply. Consequently, the
client must repeat the request to ensure it has been delivered.

Ensemble guarantees that if it has received and acknowledged a request, it will deliver it. If Ensemble
has delivered a request but has not received the response before a system crash, it will resend the
message on the restart to guarantee that the message is delivered at least once. In some cases,
Ensemble will be sending a duplicate message to the target. For example, if a business operation was
invoking an external web service when the system crashed, Ensemble has no way to determine after a
restart whether the remote service completed the request, so the business operation will resend it. Any
application that is receiving a message from an Ensemble operation must be able to gracefully handle
duplicate identical messages.

Ensemble is able to guarantee sending a message at least once by using information in the journal. In
order to ensure that journal entries are durable, you must select the ‘sync-commit’ option. This setting
requires some additional resources but is the recommended setting for mission-critical systems. You
should control the sync-commit option by setting a global in the namespace at the critical code sections
that need it.

If a business service has received a message, but has not yet acknowledged it when the system crashes,
it may send the request but cannot guarantee that the message was persisted and processed.
Consequently, if an application has sent a message to a business service but does not receive an
acknowledgement, it should resend the request to the business service.

Careful Use of Transactions

Transactions are an important tool to maintain consistency over a system crash and restart, but you must
follow the recommendations in this section.

When a request or response is sent, developers of Ensemble applications do not need to do anything to
ensure queues, message headers and message bodies are saved in a consistent manner following a
restart. This is handled by the use of transactions in the Ensemble framework where appropriate.
Consequently, you do not need to code any transactions to protect message integrity.



If your application code in a business service, process, or operation updates the Caché database, your
code must ensure that the database is left in a satisfactory state if the system crashes. You can use
transactions to ensure that database will not be left in an inconsistent state. If the system crashes while a
transaction is open, any updates to the database made while the transaction is open will be rolled back
upon a system restart. Once your code has completed updating the updates and the database isin a
consistent state, it can close the transaction.

Although transactions are important in maintaining database consistency, you must use care in coding
them. Poorly coded transactions can lead to deadlocks, slow recovery time after failures, and, in some
cases, loss of data.

When coding transactions, you should follow these guidelines:

* Code transactions to have a short duration. By ensuring that transactions are short, you
minimize the possibility of deadlocks. If your application requires a long duration to complete a
full transaction, consider breaking it into multiple intermediate transactions. When your code
starts, it should check to see if the database is in one of these intermediate steps. If it is, your
code should undo the changes and restart from a clean state.

* Ensure that if the system does not crash, the transaction is always closed. To do this, you must
safely handle any error that occurs during the transaction and there should be no code paths
that do not close it.

* Do not send a request to another configuration item or wait on an asynchronous request when a
transaction is open.

How Ensemble Uses the Active Message after a Restart

Ensemble is responsible for ensuring that messages are successfully transmitted to and from business
services, processes, and operations. When a business process or operation takes a request off a queue
and begins to process it, Ensemble saves the message header and body as the ‘active message’. When
the process or operation successfully completes, Ensemble clears the active message. If the system
crashes before the business service, process, or operation completes, the message is preserved as the
active message.

When Ensemble restarts, it detects the active message and resends it to the business service, process, or
operation. Your application code does not have to have any special code to handle the message
requeueing, but your application is responsible for handling any explicit database updates that it made.

For a business process, a response to an asynchronous call is treated as a message. This means that after
a restart, the business process can resume from the last point it was saved to disk and it will get the
response as Ensemble replays it from the active message.

Recovery after Restart

When Ensemble restarts after a system crash, or similar event, Ensemble first restores the database to a
consistent state by applying database updates from the journals and then rolling back any incomplete
transactions.

Database updates made in the application code that implement the business process may or may not
appear in the database after restart, depending on the timing of the failure and the use of transactions in
the application code. Since all transactions must be closed before completion of the business process



and control is passed back to the Ensemble framework, there is always a chance of a system failure
occurring after the application transaction is completed and before the response from the business
process or operation is secured to disk.

Once the database has been restored to the proper state, Ensemble checks to see if messages were in
progress at the time of the crash by looking at the active message global. If Ensemble detects that an
asynchronous request has been taken off the queue for processing but processing has not been
completed, the request is returned to the head of the queue and the message will be processed again as
soon as the production starts.

Synchronous requests are not replayed. The job making a synchronous call, whether it is a business
service or process, no longer exists after a restart and consequently there is no active element to receive
the request. If all requests in a session since the primary request to a business service have been
synchronous, the requests are lost; but in this case the business service will not have sent any
acknowledgement back to the caller so nothing has been guaranteed.

Note that BPL ‘synchronous’ responses are really asynchronous and are treated as such in the context of
this paper. The request is made asynchronously, but the code waits for the response before continuing.

Because messages can be replayed, when developing an Ensemble production, you must ensure that
code can be run repeatedly and provide a consistent result. Certain actions, such as inserting records
into tables with unique constraints can cause failures if repeated and the business logic must account for
these possibilities.

It is possible that a message is sent to an external system which replies, but the acknowledgement was
not processed by Ensemble before a crash. After restart this message will be sent again, and therefore all
external applications must also be able to tolerate repeated identical requests.

Care must be taken with any code that isn’t exactly repeatable. For example if data is saved using a
timestamp as part of the key, there may be no way to detect that a single message processed at two
different times should only update one set of central data. If it is just a log file recording activity that isn’t
a problem, but if it has meaning to the business logic there may be a problem.

Adapters that write or read files have special considerations because they are not protected by the
transactional nature of the database. There are many different situations that need to be considered.

If a business service using an inbound file adapter uses a workpath directory, the file is first moved from
the Filepath directory. If the system restarts during processing of the file, it will be left in the workpath
directory and after restart the inbound adapter will not find it in the inbound directory. To ensure that
the file is correctly processed, either an external process or a manual intervention must move the file
back to the filepath directory.

For a business operation, a system restart may leave partial data in the outbound file. The business
operation will reprocess its active message and the data will be written out to the file again. If the
business operation is configured to append to the outbound file, the partial data will remain and then be
repeated. The application receiving this file must be able to cope with the incomplete data.

If the business operation is configured with the ‘overwrite’ option the partial data will be replaced by a



complete set of data, but there are still cases that may cause problems. If the downstream application
picks up the partial file before it can be replaced, it will have to handle the partial data followed by the
complete data in a second file. Conceivably, the downstream application may lock the file and cause the
business operation to fail. Additionally, the name of the file created when the active message is
processed again, may not be the same as the first and the partial data will then be left in the output
directory.

Note that Caché mirroring only mirrors the Caché database. If your application depends on external files,
you must provide some other mechanism to ensure that the files are transferred from the failed system

to the mirror.



